If it's not what You are looking for type in the equation solver your own equation and let us solve it.
32k^2+21k-9=0
a = 32; b = 21; c = -9;
Δ = b2-4ac
Δ = 212-4·32·(-9)
Δ = 1593
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1593}=\sqrt{9*177}=\sqrt{9}*\sqrt{177}=3\sqrt{177}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(21)-3\sqrt{177}}{2*32}=\frac{-21-3\sqrt{177}}{64} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(21)+3\sqrt{177}}{2*32}=\frac{-21+3\sqrt{177}}{64} $
| a+6-17a=9 | | 11x=8=85 | | 5x-10+4x-14=180 | | 1p+5p-2p+4p=-40 | | 2x/5+x-1/3=16/4 | | a+6=17a+9 | | 1p+5p-2p+4p= | | p+5p-2p+4p= | | i-18=47 | | )27=15a-1 | | 3/4=x-3/3+x | | 4x+12=2(x-5) | | 3/4=(x-3)/(3+x) | | 8a+6,A=0.5 | | -14x-14=-28 | | x/3+x/4=4 | | 10n=6n2 | | -1=-7(t-1)-1+6t | | 5-y2=1 | | d-3.5=-2.5 | | 7z=55+1z= | | k8+2=14 | | -3x/5=2/3 | | |5x+8|=-12 | | 2x^2-4x+8=10 | | ⅚x=5 | | (4x+6)=48+90 | | 50-1/2x=2x | | -x/4-8=-27 | | 500=1.5-(650+1.25x) | | -4/3w+6=-1/5w-4/3 | | 5x–8=3x+4 |